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LANDING DYNAMICS TEST OF A L-SCAU 
4 

PARA-SAIL/LANDING-ROCKET MODEL 

By J. E. McC!ullou& and H. E. Benson 

SUMMARY 

1 
3 Investigations of a --scale Gemini model were conducted t o  de- 

termine the f e a s i b i l i t y  of using the Para-Sail/landing-rocket combination 
as the landing system on the present Gemini spacecraft .  
i n  these t e s t s  was a dynamically scaled Gemini configuration which i n -  
corporated a cold-gas retrorocket deceleration system and a t r i cyc le -  
skid landing gear. 

The model used 

A high-pressure nitrogen system was used in  the  model t o  simulate 
the  thrust-time curve of a solid-propellant re t rorocket ,  and the  full- 
s i z e  landing gear was simulated i n  t h e  model with respect t o  the  force- 
stroke curve of t he  energy absorber. 

Instrumentation of the  model included accelerometers on the  vehi- 
c l e ' s  th ree  axes t o  record impact accelerat ions and the  necessary pres- 
sure transducers t o  determine t h e  performence of t he  cold-gas landing- 
rocket systems, 
each t e s t .  

I n  addition, high-speed motion p ic tures  were made of 

This t e s t  s e r i e s  consisted of impacting the  model a t  simulated 
horizontal  ve loc i t i e s  of 0, 15, 30, and 50 f t / s ec  with a simulated ver- 
t i c a l  impact veloci ty  of 10 ft/sec. 
t h e  vehicle landing backwards at  a horizontal  veloci ty  of 10 f t /sec.  
The model's p i t ch  a t t i t u d e  was varied *" from t he  nominal design of 
-13', and the  model was yawed i n  increments of 5' t o  a maximum of 15'. 

Also, one test  was conducted with 

Recorded impact accelerations were lm, with a maximm of 7.4g 
occurring parallel t o  t h e  model's Y-axis. 
recorded 3.65g or l e s s .  

The other  two accelerometers 

The results of these landing tests indicate  t h a t  the Gemini space- 
c r a f t  is capable of making safe aircraf t - type landings on flat, smooth, 
compact t e r r a i n  through t h i s  complete range of test conditions with the  
exception of backward horizontal  veloci t ies .  

. ... . .. . - . - _ _  . . . . . . _ _  . _- . . . .  . . - ._ . . .  
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I n  the presence of i r regular  or so f t  landing surfaces where skid 
penetration or  t r ipp ing  occurs, the vehicle w i l l  tumble. A l s o ,  landing 
gear fa i lure  is  probable i n  the event of extreme yaw or negative (back- 
ward) velocity conditions. 

INTRODUCTTON 

The Gemini spacecraft ,  unlike i t s  predecessor Mercury, had as an 
or ig ina l  requirement t h a t  it be recovered with no damage t h a t  would pre- 
vent i t s  reuse. This design goal led t o  the adoption of the  paraglider- 
t r icycle-skid landing system. 
development of the paraglider system should become insurmountable i n  the 
time available,  a possible a l t e rna te  recovery system was conceived. 
This w a s  the Para-Sail/landing-rocket system. 

In  the  event t h a t  any of the stages i n  

The design philosophy f o r  incorporating the Para-Sail/landing- 
rocket system in to  the Gemini spacecraft  was based on a minimum modifi- 
cation t o  the ex is t ing  Gemini spacecraft .  With t h i s  approach, it was 
agreed t o  r e t a in  the present t r icycle-skid landing gear. 
of the  rocket motors i n  the vehicle w a s  a l s o  based on a minimum modi- 
f i c a t i o n  with due consideration t o  the  a t t i t u d e  of the vehicle during 
des cent. 

The locat ion 

This report  presents a discussion of the design of the  Para-Sail/ 
landing-rocket landing system f o r  the  Gemini spacecraft ,  and t h e  t e s t  
r e s u l t s  from a -scale Para-Sail/landing-rocket model which was impacted 

on three  types of landing surfaces.  

1 
3 

GEMINI LANDING ROCKET SYSTEM DESIGN 

I n  order t o  r e t a in  the present Gemini t r icycle-skid landing gear 
i n  the Para-Sail/landing-rocket system, the a t t i t u d e  of the  vehicle a t  
touchdown must remain e s s e n t i a l l y  the  same as t h a t  f o r  the paragl ider  
system. With t h i s  constraint  and with the  design philosophy of minimum 
modification, the landing rockets a r e  located i n  the lower equipment bay 

of the Gemini vehicle. Photographs of the  fu l l - sca le  and --scale land- 

ing system a re  shown i n  f igure  1. 

1 
3 

The performance requirements f o r  t he  solid-propellant rocket motor 
were chosen t o  decrease the terminal v e r t i c a l  ve loc i ty  of the vehicle 
descending on the Para-Sail parachute from 30 f t / s ec  t o  10 f t / s ec  or  l e s s .  
The length and depth of the center equipment bay d i c t a t e s  the use of a 
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p a i r  of rocket motors t o  achieve the desired performance. 
a re  ro l l ed  6.5" about t h e i r  longitudinal ax is  t o  enable the t h r u s t  vector  
f o r  each motor t o  pass through the nominal center-of-gravity of the ve- 
h ic le .  
cular t o  the longi tudinal  centerline of the  motor. The boost t h r u s t  
l e v e l  i s  5950 pounds th rus t  f o r  0.4 second and the  sus ta in  t h r u s t  l e v e l  
i s  1220 pounds th rus t  f o r  1.1 second f o r  each motor. One or more probes 
w i l l  be used t o  sense the correct  a l t i t u d e  f o r  ign i t ing  the  rocket motors. 

The motors 

!Be locat ion a l so  d i c t a t e s  t h a t  the th rus t  vector be perpendi- 

MODEL DESCRIPTION 

The Para-Sail  has lower horizontal  and higher v e r t i c a l  ve loc i t i e s  
than the  paraglider; therefore,  it became necessary t o  study and t e s t  
the present Gemini configuration t o  determine how these changes i n  ve- 
l o c i t i e s  a f f e c t  landing impact and s t a b i l i t y  of the vehicle. P r io r  t o  

1 any f i l l - s c a l e  t e s t i n g  of such a system, a --scale model t e s t  program 
3 

was in i t i a t ed .  The spec i f i c  objectives of t h i s  program were t o  de te r -  
mine the  accelerat ions during impact and the  s t a b i l i t y  charac te r i s t ics  
of the Gemini vehicle under simulated Para-Sail/landing rocket landing 
conditions. This program was designed t o  es tab l i sh  c r i t i c a l  t e s t  p a r a m -  
e t e r s ,  t o  furnish design data, t o  ver i fy  design, and t o  obtain t es t  
da t a  p r io r  t o  fu l l - sca le  tes t ing.  

1 
3 The model used f o r  these t e s t s  w a s  a --dynamically-scaled model 

of the  Gemini spacecraft .  The model's overa l l  dimensions, center-of- 
gravi ty ,  locat ion,  weight, and moments of i n e r t i a  shown i n  f igure  2 
a re  proportional t o  the  Gemini spacecraft. The Gemini landing gear and 
shock absorbers were simulated both i n  s i z e  and action. Tapered alu-  
minum honeycomb was used i n  the  shock at tenuators  as the energy absorb- 
ing material .  An e f f o r t  w a s  made t o  duplicate the  load-stroke curve of 
the  Gemini shock at tenuators ,  as f'urnished by McDonnell A i rc ra f t  Corp- 
oration. Photographs of the  landing gear and shock at tenuators  a re  
included i n  f igures  3 t o  5.  

The model parameters were obtained by sca l ing  the prototype param- 
e t e r s .  
l a t e d  was the  drag force of the parachute. Therefore, the e f f e c t  of 
t he  parachute drag force w a s  compensated for i n  the model program by 
ad jus t ing  the  i n i t i a l  veloci ty  of the  model using the equations of 
motion. However, it should be emphasized t h a t  a l l  other parameters 

The only prototype parameter that could not ea s i ly  be simu- 
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Length 

Time 

Mass 

Jeight  

Acceleration 

Coefficient of f r i c t i o n  

Force 

Velocity 

Moment o f  i n e r t i a  

were scaled, inc-d ing  the model veloci ty ,  a t  the ins tan t  of boost- 
phase thrust .  The following scale factors  are  applicable: 

Quantity : Full s i z e  Scale f ac to r  

Y 

IF- 
3 Y 

3 Y 

1 

1 

3 Y 

5 Y 

Model 

YZ 

m 
3 Y m  

3 
Y W  

a 

U 

Y3F 

lm- 
Y 5 1  

I For t h e  model used i n  the  tes t ,  y was chosen as -. 3 
The propulsion system used t o  simulate the  so l id  propellant rocket 

motors used compressed nitrogen gas, expanding from a common manifold 
through two nozzles. The propulsion system is  shown schematically i n  
f igure  6. The nitrogen gas was stored i n  t h e  tanks a t  a pressure of 
3000 p s i  and w a s  regulated t o  the  pressure required a t  the  nozzle t o  
produce the desired th rus t .  
were run on a thrus t  stand t o  obtain t h e  ne t  resu l tan t  t h rus t  as a func- 
t i o n  of  nozzle pressure. The boost t h rus t  l e v e l  was governed by the  
regulator dome pressure se t t ing .  I n  order t o  obtain t h e  sus ta in  th rus t ,  
it was necessary t o  reduce the  regulator  dome pressure. 
achieved by opening the  regulator  dome solenoid valve momentarily t o  
allow the  regulator dome pressure t o  decrease t o  the  desired value. 

The two nozzles, mounted i n  the  manifold, 

This w a s  

I n  order t o  control  t h e  system, an e lec t ronic  sequencer was used 
t o  control t h e  t i m e  in te rva ls  within a f e w  milliseconds. The sequencer 
contained two R-C network channels, one f o r  opening and closing t h e  
regulator  dome solenoid valve and one for opening and closing t h e  nozzle 
solenoid valve. A start s igna l  w a s  fed in to  the  sequencer by t h e  closing 
of a microswitch when the  model physically separated from the drop tower. 
This start s igna l  i n i t i a t e d  both R-C networks; however, both the  band- 
width and the  t o t a l  time f o r  each R-C network were control led individ- 
ually by variable potentiometers. 



5 

Reference 1 presents 
propel lant  motors and the 

a complete discussion of t he  fu l l - sca le  s o l i d  
cold-gas system used i n  these tests. 

TEST PROCEZXTRE 

The model w a s  suspended from t h e  compound pendulum carr iage 
(f igs .  7 and 8), and i t s  ve r t i ca l  height above the  impact surface was 
adjusted f o r  a calculated ver t ica l  velocity.  
pul led back by a cable winch t o  a spec i f i c  height so t h a t  i t s  horizontal  
component of veloci ty  was a l so  established. 
fixture was adjustable  so that the model could be given any desired i n i -  
t i a l  p i t ch  and yaw a t t i t ude .  Because of the  nature of the  pendulum, the 
model re ta ined the  i n i t i a l  p i tch  throughout the swing .  
pendulum swung through i ts  arc and actuated a microswitch which, i n  turn, 
caused the attachment mechanism t o  release t h e  model a t  the  neut ra l  posi-  
t i o n  on the  pendulum's swing arc .  
a s top on t h e  prepared surfaces without any r e s t r a i n t  except i ts  t r a i l i n g  
umbilical  cable, Ta neutral ize  t h i s  e f f ec t  as much as possible,  t he  ca- 
ble was given an i n i t i a l  horizontal veloci ty  equal t o  that of the  model. 

The pendulum w a s  then 

The supportfng carr iage 

On release, the  

The model then impacted and s l i d  t o  

Onboard instrumentation consisted of four  strain-gage accelerometers 
and two pressure transducers. Three accelerometers were i n s t a l l e d  a t  the 
model's center  of gravi ty  along the three pr inc ip le  axes t o  record im- 
pact  accelerat ions.  Another accelerometer was mounted a t  the  nozzle man- 
i f o l d  t o  record accelerat ions along the  th rus t  axis .  The pressure trans- 
ducers were i n s t a l l e d  so  that nozzle pressures were recorded. Output 
signals from these instruments were transmitted through an umbilical 
cable t o  the  amplifying and recording equipment. 

Model impact a t t i t udes ,  in addition t o  motions and displacements 
which occurred after contact, were recorded by three s ta t ionary  16-UI~ 
high-speed motion-picture cameras. 

MODEL TEST 

Tests were made i n  two general phases. In t he  f i r s t ,  without using 
the  propulsion system, the  modelwas t e s t ed  on two types of possible  
landing t e r r a ins ,  and it was assumed that t h e  rockets had performed un- 
der nominal conditions. In t he  second phase, t he  propulsion system w a s  
employed as an ac t ive  system. 
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I n  phase I, two types of landing surfaces were used t o  determine t o  
w h a t  degree t e r r a i n  conditions a f f e c t  s t a b i l i t y ,  
was not used, and the  model was dropped a t  ve loc i t ies  that would be pre- 
sen t  i f  the  rocket motors had f i r e d  under normal conditions. 

The propulsion system 

I 

Tests 1 t o  11 were conducted on a landing surface prepared by 
covering hard-packed s o i l  with a m a t  of St.  Augustine grass  composed of 
1-foot square sections of sod placed close together. To f i x  the  sod 
squares r ig id ly  in to  a reasonably uniform surface and t o  prevent t h e  
squares from slipping, loose sand was packed between them. For tests 12 
t o  24, t h e  sod and sand were removed, and t h e  hard-packed s o i l  was 
leveled t o  remove surface irregularities. 

Before t e s t i n g  on each of t he  two surfaces, data were recorded t o  
permit calculation of coef f ic ien ts  of f r i c t ion ,  penetration, and rela- 
t i v e  roughness. 
quired t o  s l i de  the  model over t h e  surface was  recorded with a load 
c e l l ,  
sod surface and 0.50-for the hard-packed s o i l .  

To obtain the  coef f ic ien t  of f r i c t ion ,  t h e  force re- 

The coeff ic ient  of f r i c t i o n  was calculated t o  be 0.49 f o r  the 

The re la t ive  hardness of t h e  impact surfaces was obtained by drop- 
ping a sphere, which measured 5 inches i n  diameter and weighed 16 pounds, 
from a height of 7 feet and measuring t h e  depth of impact impression, 
The sphere was dropped 10 times on each of t h e  two surfaces, and t h e  
average depressions were calculated. 
culated t o  be 1.44 and 1.38 inches f o r  the sod and the compacted s o i l ,  
respectively . 

The average depressions were ca l -  

The average difference i n  ground elevat ion was 0.3 inch every 2 f e e t ,  
with a maximum difference of 1.0 inch per 2 feet f o r  t he  sod surface. 
No attempt was made t o  ca lcu la te  t h e  r e l a t i v e  roughness of t h e  s o i l  be- 
cause the  surface was leveled by dragging p r i o r  t o  testing. Throughout 
these tests the p i tch  and v e r t i c a l  veloci ty  were maintained a t  a constant 
-13' (nose-down a t t i t u d e )  and 10 ft/sec ( fu l l - sca le ) ,  respectively.  The 
yaw angle was varied i n  increments of 5' from 0" t o  15" f o r  each of the 
horizontal  veloci t ies  of 0, 13, 30, and 50 f t / s ec .  
t e s t  was made landing the model backwards (180" yaw) a t  10 f t / sec  
( fu l l - sca le )  horizontal  veloci ty .  

In  addition, one 

Phase I1 - Impact Tests on Canvas with Active Propulsion System 

The conditions f o r  the  phase 11, t e s t s  23 t o  50, were bas ica l ly  the  
same as those f o r  t he  first phase, except that an ac t ive  propulsion sys- 
t e m  was used, 
phase I i n  which impact conditions were based on assumptions that the  

The purpose of phase I1 was t o  verif'y t h e  results of t he  
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. 

propulsion system had performed properly. Also,  phase I1 invest igated 
the  e f f ec t  of the  rockets '  sustainer t h r u s t  on the  vehicular s t a b i l i t y  
during slide-out.  

The landing surface f o r  phase I1 was the  smooth, compacted s o i l  
covered with canvas t a rps  t o  reduce the amount of dust  act ivated by the  
rocket blast. The coef f ic ien t  of f r i c t i o n  f o r  t he  canvas w a s  calculated 
t o  be 0.42 by using data  taken p r i o r  t o  rocket th rus t .  
e f f i c i e n t  of f r i c t i o n  obtained during employment of t he  propulsion sys- 
t e m  was calculated t o  be 0.55. It i s  believed t h a t  t h i s  higher coef f i -  
c i en t  can be a t t r i bu ted  t o  removal of dust  from the  surface of the  canvas 
by the  rocket exhaust. 

A second co- 

The model was dropped from a predetermined height and allowed t o  
f a l l  free u n t i l  t he  desired i n i t i a l  veloci ty  was achieved. 
quencer w a s  preset  so t h a t  approximately 90 percent of boost t h r u s t  w a s  
achieved a t  the  ins tan t  t he  desired i n i t i a l  veloci ty  w a s  reached. 
sequencer w a s  a l so  preset  t o  allow the  proper t i m e  in te rva l  f o r  t h e  
boost and sus ta in  th rus t  phases. 

The se- 

The 

The nominal i n i t i a l  ver t ica l  veloci ty  f o r  t h i s  test  series was con- 
' s t a n t  a t  14.3 f t /sec.  The only var ia t ions i n  i n i t i a l  v e r t i c a l  ve loc i ty  

were due t o  var ia t ions i n  the  sequencer and t h e  response of t h e  propul- 
sion system, The horizontal  veloci t ies  t e s t ed  were 0, 15, 22.3, and 
30 f t / sec .  The p i tch  angle wits varied from a nominal of -13' (nose down) 
t o  *5" .  The yaw angle was varied i n  increments of 5" from 0" t o  13'. 
Tests were performed w i t h  combinations of these horizontal  ve loc i t i e s  
and p i tch  and yaw angles. 

One addi t iona l  test  was conducted with the  canvas ta rps  removed. 
I n  t h i s  test  t h e  model w a s  pulled along with an average horizontal  ve- 
l oc i ty  of 3.5 f t / sec ,  with the retrorockets thrust ing a t  the  sus ta iner  
level .  The purpose of t h i s  test was t o  obtain preliminary data on t h e  
amount of s o i l  erosion resul t ing from the  rocket th rus t .  

RESULTS AND DISCUSSION 

The general landing behavior was similar f o r  a l l  conditions. It 
w a s  characterized by an approach a t  the  predetermined a t t i t ude ,  impact 
on the  main gear, angular rotation u n t i l  nose gear impact, and by t h e  
sl ide-out.  On i n i t i a l  contact o f  t he  main skids, a portion of t he  s ink 
speed energy was absorbed by the rear shock at tenuators ,  and t h e  vehicle 
w a s  given a ro t a t iona l  impulse in  pitch.  The resu l t ing  v e r t i c a l  and ro- 
t a t i o n a l  e n e r a  i n  t h e  system was then absorbed during primary nose gear 
impact, by both the  nose and main gear energy absorbers. Ehergy due t o  
the  horizontal  landing velocity w a s  largely diss ipated by skid f r i c t i o n  
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( 2 )  The drop tower carr iage imparted a tip-off torque t o  the  model 
I i n  t h e  p i t ch  plane upon release. The resu l tan t  angular p i t ch  rate was 

forces during slide-out,  and by the  resis tance force of t h e  skids  r id ing  
over or shearing t h e  impact indentations i n  t h e  landing surface,  

During yawed landings without t h e  propulsion system, the  vehicle re- 
turned t o  a n  approximately unyawed slide-out pos i t ion  during t h e  t i m e  
between the  i n i t i a l  impact of t he  main and nose gears. 

S t ab i l i t y  on Sod and S o i l  Surfaces Without Propulsion 

In  a l l  tests on t h e  sod surface where the  horizontal  veloci ty  and 
yaw angle did not exceed 30 f t / s ec  and Oo, respectively,  the  model ap- 
peared dynamically stable.  
combined with a yaw angle of 5" caused t h e  nose skid drag force t o  be- 
come la rge  enough that the  model turned over or ro l l ed  slowly over i n  
the  direct ion of t rave l .  
veloci ty  and lo" yaw; therefore,  tests were not made a t  grea te r  yaw 
angles,  

However, a horizontal  ve loc i ty  of 30 f't/sec 

This tendency recurred a t  3O=ft/sec horizontal  

Tumbling a l s o  occurred a t  5O-ft/sec horizontal  veloci ty  and 0" yaw. 
This was a violent end-over-end motion i n  which the  model nose skid dug 
in to  the  tu r f ,  pitched 360" about t h e  Y - a x i s  with t h e  nose skid as a 
pivot point,  and landed upright on t h e  landing gear. 

I n  test 11, the  y a w  angle was set a t  180' and t h e  model w a s  given a 
backward horizontal velocity of 10 f t /sec.  
main landing gear f a i l e d  a t  the  s t r u t  hinge point,  and the  drag brace 
member buckled. 

I n  t h i s  test, the  l e f t  rear 

Tests 12 t o  24 were conducted on t h e  hard-packed s o i l  surface witho 
horizontal  veloci t ies  from 15 t o  50 f t / sec  and yaw angles from Cf t o  15 , 
The vehicle proved qui te  stable on t h i s  surface, remaining upright f o r  
a l l  test  conditions. 

S t ab i l i t y  on Canvas Surface with Active Propulsion System 

I n  t h e  tests employing the  propulsion system, there  were three 
spec i f i c  problems : 

(1) The th rus t  vector was i n i t i a l l y  misalined with t h e  model's 
center of gravity. The resu l t ing  torque w a s  of su f f i c i en t  magnitude 
t o  p i t ch  the  vehicle over on i t s ' h e a t  sh ie ld  when the  model was not 
t rave l ing  a t  a horizontal  velocity. After the proper thrust-vector 
alinement was achieved, the  vehicle exhibited good p i t ch  s t a b i l i t y .  
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b 

i n  t h e  d i rec t ion  fo r  pitching the nose of t h e  model up. 
zontal  component of t he  th rus t  imparted a backward ve loc i ty  t o  the  model. 
By the  time the  r ea r  gear impacted, the p i t ch  a t t i t u d e  had changed suf- 
f i c i e n t l y  t h a t  t h e  backward horizontal ve loc i ty  coupled with the  hori-  
zontal  component of the thrust vector w a s  su f f i c i en t  t o  p i tch  the model 
over on i t s  heat shield,  using the r ea r  gear as a pivot point. 
problem was corrected by moving the attachment bracket on the model so  
t h a t  it was d i r e c t l y  above the  model's center  of grav i ty  when the  vehicle 
was trimmed f o r  an a t t i t u d e  o f  -13O. 

Thus, the  hori-  

This 

( 3 )  A t  horizontal  veloci t ies  of 20 f t / sec  the  t r a i l i n g  umbilical 

This problem w a s  overcome by 
cable exerted an i n e r t i a  force which caused the  model t o  change i t s  
p i tch  and y a w  a t t i t u d e s  pr ior  t o  impact. 
accelerat ing the cable t o  a horizontal ve loc i ty  equal t o  t h a t  of t h e  
model. 

A l l  tests i n  which one of t h e s e  three problems occurred were rerun 
after the  conditions were corrected. 

Two of these problems a re  inherent t o  the  model program only. 
ever, t he  alinement of t he  thrust  vector through the  center of grav i ty  
i s  a problem i n  the  prototype vehicle. 
through the  center of grav i ty  within close l i m i t s  ( g / 2  inch) or the  
vehicle w i l l  acquire undesirable motion, such as pitching over on the  
heat  shield or r o l l i n g  o f f  the landing gear. However, the  alinement of 
t he  th rus t  vector f o r  the  prototype vehicle should be l e s s  sens i t ive  
since it w i l l  be used i n  conjunction with a parachute and the parachute 
w i l l  be attached such that the  parachute l i n e  loads w i l l  produce a 
torque t o  oppose any torque produced by a th rus t  vector misalinement. 

How- 

The th rus t  vector must pass 

The propulsion system's function w a s  t o  a t tenuate  the  v e r t i c a l  
component of velocity. The thrust-time re la t ionship  w a s  obtained from 
the  nozzle pressure-time trace.  The ve loc i ty  and distance-traveled 
t i m e  re la t ionships  were derived by d i r ec t  integrat ion of Newton's sec- 
ond law. Since t h e  t o t a l  drop height of t he  vehicle was known, t h e  
method of determining the  velocity and distance t raveled as a function 
of time i s  accurate, providing that the t i m e  required t o  t r ave l  t he  
t o t a l  distance ana ly t ica l ly  i s  equal t o  the t o t a l  time t o  impact derived 
from the accelerometer data. 
distance as determined ana ly t ica l ly  w a s  compared t o  the  t o t a l  t i m e  t o  
impact as derived from the accelerometer data. This comparison w a s  
made with favorable r e s u l t s  on a l l  t e s t s  i n  which the  propulsion sys- 
t e m  was used. The vehicle motion during rocket f i r i ng ,  with combina- 
t i ons  of present e r rors  i n  the  pitch angle of &y and y a w  angles up 
t o  ly .cad with horizontal  veloci t ies  up t o  a s i d a t e d  30 f t / sec ,  was 
sat isfactory.  The v e r t i c a l  component of veloci ty  a t  impact ranged from 
a simulated 5 t o  10.7 ft /sec.  
deviations i n  t h e  sequencer and in  the  magnitude of t he  thrust. 

The t i m e  required t o  t r a v e l  the  drop 

This range of ve loc i t i e s  w a s  due t o  
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Accelerations 

Acceleration h i s t o r i e s  were recorded by means of accelerometers 
i n s t a l l e d  on t h e  three  major axes of the  vehicle and i n  the  d i rec t ion  
of the  thrust vector. 
cluding t h e  ve r t i ca l  and horizontal  ve loc i t ies  a t  impact, the model 
s l ideout  distance, the  average coef f ic ien t  of f r i c t i o n  f o r  t he  main 
landing gear, t he  peak impact accelerat ions along the  pr inc ipa l  axes 
of t he  vehicle, and comments on t h e  vehicle 's  s t a b i l i t y .  
impact accelerations f o r  t e s t  conditions with and without t h e  propulsion 
system was very comparable. Although tumbling and end-over-end f l ipp ing  
occurred, the accelerat ions encountered were relatively low and were 
w e l l  below the l e v e l  of human endurance. 

Table I presents a summary of t es t  r e su l t s ,  in- 

The range of 

The maximum accelerations were recorded along the  Y-axis. These 
accelerations ranged from 1.38g t o  7.4g, with the  higher values recorded 
during tes t ing  on t h e  hard-packed s o i l  surface without the  propulsion 
system. These higher accelerat ions may be a t t r i bu ted  t o  the f a c t  that 
the  apparent weight of  the  vehicle during sustainer  phase thrus t ing  i s  
only one-half the  real  weight without t he  propulsion system and the  sod 
at tenuated more of t he  impact shock than the  other landing surfaces. 

No attempt was made t o  change the roll posi t ion from 00 during 
these t e s t s ,  and the accelerat ions measured along the  X-axis of t he  
vehicle were negligible. The X-axis accelerat ions shown i n  t ab le  I 
were insignif icant  i n  magnitude and can be a t t r i bu ted  t o  the  irregu- 
l a r i t y  of the landing surfaces, which caused the  model t o  bounce and 
t i p .  

The accelerations recorded along the Z-axis were, likewise, small, 
ranging from a minimum of -0.24g t o  a maximum of 3.65g, which occurred 
during vehicle tumbling. 
h i c l e  p i t ch  a t t i tude ,  landing gear drag, and bouncing of t he  model 
about i t s  pitch axis. It should be noted t h a t  i n  the  t es t  i n  which 
the  gear failed,  accelerations were approximately the  same as those i n  
the  preceding tes t  and t h e  backward horizontal  ve loc i ty  caused the  gear 
failure. 

These accelerations are proportional t o  ve- 

Coefficients of Fr ic t ions 

For purposes of comparison, t h e  average coeff ic ient  of f r i c t i o n  
f o r  each t e s t  w a s  calculated by the  same method as that used i n  
McDonnell's l /k-scale model t e s t  report  TR 052-042.10. 
arrives a t  a coeff ic ient  of f r i c t i o n  by assuming t h a t  a l l  horizontal  
energy i s  dissipated only by f r i c t i o n  forces. 
t h e  square o f t h e  horizontal  ve loc i ty  by twice the accelerat ion of 
grav i ty  multiplied by t h e  sl ide-out distance. This equation i s  not 

This mthod 

It is  derived by dividing 
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e n t i r e l y  va l id  because some of the horizontal  energy i s  diss ipated by 
the  skids '  e i t h e r  r id ing  over or shearing t h e  impact indentations i n  the  
landing surface. Although there  is  some fa l l acy  in  t h i s  equation, it i s  
t h e  bes t  method avai lable  without more complex instrumentation. The 
average coeff ic ients  of f r i c t i o n  are p lo t ted  i n  figure 9. The band be- 
tween 0.4 and 0.6 represents v a l u e s  obtained with the load c e l l  method. 
A l l  tagged points a re  fo r  tests which did not use the  cold gas system. 
A l l  of these points are higher than t h e  band values, which indicates  
t h a t  t he  coeff ic ient  of res t i tu t ion  and surface i r r e g u l a r i t i e s  a f fec ted  
these t e s t s  t o  a much grea te r  extent than t h e  t e s t  made with the  pro- 
pulsion system. 

Table I shows the  sl ide-out distances used i n  calculat ing the co- 
e f f i c i en t s  of f r i c t i o n  fo r  each run. 
on sod and s o i l  without t he  propulsion system, s l i d e  distances of about 
1 foot  were recorded. These t e s t s  were made with horizontal  ve loc i t i e s  
of 15 f t / s ec  and v e r t i c a l  veloci t ies  of 10 ft /sec.  

landing conditions, a sl ide-out distance of f e e t  w a s  recorded on 

t e s t  26, with the ac t ive  propulsion system. 
of f r i c t i o n  for t he  three surfaces a re  comparable. The difference i n  
sl ide-out distance with the  propulsion system i s  a t t r i bu ted  t o  the lower 
drag force on the  skids as  a result of the  reduction i n  normal force be- 
cause of t he  sus ta iner  thrust .  

On tests 3 and 12, which were m d e  

While under the  same 

G 
However, the  coeff ic ients  

In tes t  33, where the vehicle 's  p i tch  a t t i t u d e  w a s  increased t o  
-180 nose down, the slide-out distance f o r  t h e  model increased t o  11 feet. 
This increase was caused by the horizontal component of the  propulsion 
system th rus t  vector a t t r i bu ted  t o  the  change i n  a t t i tude .  

Surface Erosion 

The results of the test  i n  which the  propulsion system w a s  exhausted 
d i r e c t l y  upon the  compacted s o i l  surface were of  i n t e re s t  as qua l i t a t ive  
data  only. It would not be correct t o  say t h a t  t h i s  s o i l  was e n t i r e l y  
representat ive of e i t h e r  a prepared or an unprepared landing surface 
that could be used f o r  a spacecraft recovery. The exhaust plume of t h e  
sus ta in  phase of t he  cold-gas system blasted a hole i n  the  surface ap- 
proximately 30 inches i n  diameter and 8 inches deep when the  model had 
no horizontal  ve loc i ty  ( f ig .  10). 

The model was then given a horizontal  veloci ty  of 3.62 f t / sec ,  and 
Two ruts the  propulsion system w a s  again activated a t  sustainer  level.  

approximately 8 inches wide and 2 inches deep were made ( f ig .  11). 
preliminary data indicate t h a t  i f  a landing rocket recovery system i s  
used, then s o i l  erosion caused by rocket plume w i l l  require addi t iona l  
study. 

These 
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CONCLUSIONS 

Tests were conducted t o  determine the f e a s i b i l i t y  of using the 
Para-Sail/landing rocket combination as the landing system on the pre- 

sen t  G e m i n i  spacecraft. 

deceleration system and a t r i c y c l e  skid landing gear was used. 
r e su l t s  of the  t e s t s ,  the  following conclusions nay be drawn: 

1 
3 

A --scale Gemini spacecraf t  with a cold-gas 
From the 

(1) By using d i r ec t iona l  control  furnished by the  Para-Sail and 
with the  low v e r t i c a l  rate of descent made possible by the  use of landing 
rockets, accelerations w i l l  be small, with mgnitudes i n  the  order of 
log  or less .  During these t e s t s ,  the  maximum accelerat ions recorded 
were 7.4g (Y-axis), 3 . l g  (X-axis), and 1.62g (Z-axis). 

(2) The present Gemini landing gear w i l l  operate s a t i s f a c t o r i l y  on 
a smooth, prepared surface; however, tumbling is  imminent on sod or  on 
other i r regular  surfaces where penetration can occur, causing the  landing 
gear t o  t r ip .  

(3) The present Gemini landing gear i s  not designed f o r  extreme 
yaw conditions. 
fa i l ;  however, accelprations w i l l  be low. It i s  not f eas ib l e  t o  redesign 
the  landing gear t o  compensate for  t h i s  handicap because of t h e  space- 
c r a f t ' s  tendency t o  tu rn  over on i t s  heat  sh ie ld  when t h e  landing rockets 
a re  thrusting. 

A t  18s y a w  (backward) landing, t h e  gear w i l l  probably 

(4) Proper th rus t e r  alinement with the  vehic le ' s  center  of grav i ty  
i s  c r i t i c a l .  Also, wide var ia t ions  i n  vehicle  w e i g h t  and a t t i t u d e s  
cannot be to le ra ted  from the  standpoint of impact accelerat ions and ve- 
h i  c l e  s t ab i l i t y .  

( 5 )  Tests a re  required where a parachute i s  used i n  conjunction 
with the  landing rockets t o  determine the  drag force and vehicle  s t a b i l -  
i t y  as a function of t i m e  during rocket f i r i ng .  

(6) Under ce r t a in  landing conditions, s o i l  erosion caused by the  
propulsion system m y  crea te  r u t s  la rge  enough t o  cause gear trippage. 
With the  data presently ava i lab le  it appears that erosion could be a 
problem. 

4 
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(a) Complete ful t-scale system 
Figure 1. - Landing system 
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